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Many studies in nematodes, fruitflies, zebrafish, and mice 
have revealed that the number of key neurons regulating 
specific behaviors is a small fraction of the total number 

of neurons in the nervous system1–10. Conventional methods for the 
identification of this small fraction (Fig. 1a,b) require the interroga-
tion of the different subtypes of neurons in the neural network one 
at a time11. However, genetic and molecular approaches to imple-
ment this search are challenging owing to the lack of unique genetic 
markers and promoters specific to only one neural subtype both in 
Caenorhabditis elegans12 and in other animals13–15. Even if specific 
genetic tools did exist, the measurements would have to be made 
one neuron subtype at a time. Compressed sensing techniques from 
statistics16,17 have been successful in both efficient sampling and 
accurate inference of important sparse features in data18–21. Thus, 
compressed sensing methods could provide an alternative strategy 
for rapidly prioritizing the contribution of different neurons to a 
given behavior, enabling a focused analysis of key neurons. Indeed, 
we show that an experimental framework based on compressed 
sensing enables the identification of key sets of neurons controlling 
the speed of locomotion of C. elegans, despite the lack of promoters 
to target individual neuronal subtypes.

The first principle of compressed sensing is to make measure-
ments on an incoherent basis where the data are not sparse22. 
For example, if the data are sparse in the time domain, measure-
ments should be made in the frequency domain in which basis the 
same data are no longer sparse. In the context of neural circuits, 
this means that perturbations of neural activity should not target 
one neuron subtype at a time to match measured responses to a 
small number of key neurons. Instead, groups of neuron subtypes 
should be perturbed simultaneously (over a total of at least ~log[N] 
groups, where N is the total number of neuron subtypes in the net-
work). Following theorems by Candes and Tao16,22,23, these groups 
need not be carefully chosen, and the method will work for most 

arbitrary choices, even with very different numbers of neuron sub-
types in each group. The second principle of compressed sensing 
is that the data from as few as ~nlog[N] such measurements can 
be analyzed using L1-norm regularization to find the small num-
ber n of key neuron subtypes driving the behavior (n<​<​N). This is 
much less than the N measurements needed using a conventional 
approach that uses unique promoters to address one neuronal sub-
type at a time.

Results
Compressed sensing framework to identify essential interneu-
rons controlling the speed of locomotion in C. elegans. The lack 
of specific promoters and mutations that affect individual inter-
neuron subtypes in C. elegans has hindered efforts to systematically 
uncover the roles of these neurons in different behaviors. We there-
fore used C. elegans as a system in which to test a framework based 
on compressed sensing to systematically identify the key interneu-
ron subtypes controlling the speed of locomotion. We first designed 
an incoherent measurement matrix by leveraging non-specific 
promoters. We selected 27 promoters, primarily expressed in inter-
neurons, with expression patterns that have been characterized 
(Supplementary Table 1). Each of these promoters drives expression 
in 2 to 15 neurons. Together, these promoters were active in 88 of 
the 118 neuron types in the animal, including 56 types of interneu-
rons, 22 types of sensory neurons, and 10 types of motor neurons 
(Fig. 1c and Supplementary Table 1)12,24,25. These 27 promoters gen-
erate an incoherent 27 ×​ 88 dimensional measurement matrix M, 
where each row of this matrix corresponds to the promoter identity 
and each column to the neuron type. If promoter i drives expres-
sion in neuron type j, Mij=​1, and else Mij=​0 (Fig. 1c). To implement 
the measurement matrix experimentally, we constructed transgenic  
C. elegans lines in a lite-1 mutant background26, with each line  
driving the expression of archaerhodopsin-3 (Arch)27,28 under the 
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Fig. 1 | Compressed sensing framework enables identification of essential neurons controlling speed of locomotion in C. elegans. a, A network of nodes 
(black dots) with a small number of essential nodes for a phenotype (red), and synaptic connections (gray lines). A node can either be an individual 
neuron or neuron subtypes. b, Identifying essential neurons by perturbing nodes one at a time is equivalent to solving a matrix equation with an N ×​ N 
diagonal measurement matrix (diagonal entries of one for the perturbed neuron, zero otherwise) multiplying unknown neuron weight vector ⎯→ω  set equal 
to measured phenotype vector ⎯→⎯P . The number of measurements N linearly increases with the size of the network. c, The 27 ×​ 88 measurement matrix M 
generated from 27 transgenic lines expressing archaerhodopsin-3 under the control of non-specific promoters. Rows are promoters, columns are neuron 
types. Matrix has an entry of 1 (white) if the promoter drives expression in that neuron type, else 0 (black). Bars above the measurement matrix show the 
number of times each neuron appears in the matrix (interneurons, blue; sensory neurons, green; motor neurons, red). Finding key neurons from 88 neuron 
types using just 27 measurements requires solving an underdetermined set of linear equations ⎯→ ⎯→⎯

ω =MM P . d, KL divergence between speed distributions 
of control and Arch lines placed in descending order. Inset, variation of KL divergence in wild-type replicates. Blue dashed lines, 95th percentile of the 
distribution. e, Median neuron weights from 10,000 lasso regression solutions through bootstrapping for sparsity parameter spanning three orders 

of magnitude. Red arrow, sparsity parameter picked for f. Dashed line, mean squared error ⎯→ ⎯→⎯
χ ω= −MM P( )2

2
 of optimized solution for given sparsity 

parameters. f, Neuron weights distribution for each neuron types for sparsity parameter shown in e. Red line, median; box, 25 and 75; whiskers, 5th and 
95th percentiles. The neurons arranged in the same order as in c.
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control of one of the 27 promoters. Although most of our lines 
showed expression patterns in a defined set of neurons, consistent 
with the literature, a few promoters (Supplementary Fig. 1) were 
substantially different. We used our observed expression patterns in 
these instances to correct the measurement matrix.

To measure the locomotor phenotypes of the 27 lines, we grew 
animals on bacteria with all-trans-retinal (ATR) and then placed 
them 1.5 cm away from the center of a bacterial lawn approximately 
0.3 mm in radius on a standard agarose plate while being exposed 
to 5 mW mm−2 of 525 nm (green) light to inhibit all neurons 
expressing archaerhodopsin-3 (Supplementary Fig. 2a,b). Using 
a multi-particle tracking approach, we measured the speed of the 
transgenic animals as they performed chemotaxis (Supplementary 
Fig. 2b,c and Supplementary Fig. 3). Of the 27 transgenic lines, five 
(Promflp-21, Promnpr-4, Promodr-2b, Promsra-11, Promdop-2) showed speed 
distributions that were significantly different from those of control 
animals based on the 95th percentile of the variation in the wild-
type Kullback–Leibler (KL) divergence (Fig. 1d and Methods). 
Thirteen lines showed changes in reversal frequency of the animals 
or a lower fraction of animals arriving on the bacterial lawn than 
in the control group (Supplementary Fig. 4), despite not showing 
any change in speed phenotype. Thus, while the optogenetic per-
turbations are effective in many of these different lines, the ability to 
control speed is not broadly distributed among all of the neurons of 
the nervous system.

Next, we used these 27 distinct sets of measurements to find the 
contribution of each of the 88 neuron types to the observed phenotype. 
We formulated the problem as an underdetermined set of equations 

ω→=
→

M P , where M is the measurement matrix, ω→ is the vector of the 
neuron weights, and →P  is the phenotype vector. The measured frac-
tional reduction in the mean speeds of the 27 lines compared to the 
wild type gave us the phenotype vector →P  (Supplementary Fig. 2d).  
To solve this set of equations, we imposed a sparsity constraint that 
only a small fraction of all the neuron subtypes must be essential 
for controlling speed. As we did not know how many neurons were 
key to controlling speed, we could not constrain the sparse solu-
tion to contain a specific number of neurons. We therefore used 
Lasso regression29,30, imposing sparsity on the solution by con-
straining the sum of the absolute values of the individual weights 
of the neurons (that is, the L1 norm of ω→). Minimizing the sum of 
the mean squared error χ ω= →=

→
M P( ( ) )2 2  and the L1 norm of the 

weight vector ω∣ ∣→∣ ∣( )1  multiplied by a Lagrange multiplier (λ) gives 
ω λ ω→=

→
+ ∣∣→∣∣M P( )

2

1
, which imposes a sparsity constraint on the 

solution. Tuning the sparsity parameter λ changes the sparsity of 
the solution: increasing the value of λ leads to fewer neurons being 
used to fit the data. Thus, using Lasso we obtained solutions for the 
neuron weights with λ spanning over three orders of magnitude. 
We also calculated the errors in the estimated neuron weights. Over 
a wide range of values of the sparsity parameter, the chi-squared 
error of the fit of the weight vectors to ω→=

→
M P  remained stable, 

and our analysis yielded three key interneurons with large weights: 
AVB, RMG, and SIA (Fig. 1e). AIY appeared in the solution but 
had lower weights. Although the weights of AIY increased for large 
values of λ, in this regime, the fit of the inferred weight vectors to 

ω→=
→

M P  deteriorated rapidly (Fig. 1e). Owing to error propagation, 
AIB, AIZ, AVA, AVK, RIA, RIC, RID, RIF, RMD, SIB, BAG, CEP, 
IL2, RIM, and URA appeared with low weights in a small fraction 
of the solutions (Fig. 1f).

We tested the robustness of the results. Using either an L1-norm 
minimization alone or a nonlinear phenotype vector produced 
results consistent with those above: a core set of three neurons 
(AVB, RMG, and SIA) along with a few other neurons with low 
weights (Supplementary Fig. 5a–d). We further tested our results 
for robustness to corruption of the original measurement matrix 
to account for potential variations in the levels of archaerhodop-
sin expression (Supplementary Figs. 6,7) and the sensitivity of our 

inference to the chosen promoters by changing the number of pro-
moters from 22 to 32 (Supplementary Fig. 8). Next, we determined 
the accuracy of our results by estimating the false-positive and 
false-negative discovery rates (Supplementary Fig. 9). The number 
of false-negative interneurons using our measurement matrix with 
27 promoters was on average less than one for up to 6 essential neu-
rons (Supplementary Fig. 9a,f). Finally, we computationally tested 
the efficacy of our method to analyze nonlinear deep-learning net-
works. This suggested that in such networks31 our method has the 
potential to identify the key neurons (Supplementary Fig. 10). This 
is consistent with the efficacy of Lasso regression in the presence of 
nonlinear distortion32.

Stabilization microscope for long-duration calcium imaging and 
optogenetic manipulation of freely moving animals. To validate 
the solutions inferred using Lasso, we sought to perturb and accu-
rately image neural activity in freely behaving animals. Imaging 
neural activity in a moving animal at high magnification is chal-
lenging, despite recent progress33–36. To make such imaging possible, 
animal movement was restricted in these studies33–36 (at least by a 
glass coverslip for accurate z tracking), potentially affecting their 
speed of movement. Furthermore, these studies used light levels 
of at least 14 mW mm−2 to track the animal for 5 min, by which 
time the effects of phototoxicity are evident35. To overcome these  
limitations, we built a real-time image-stabilization microscope with 
the capacity to perform imaging at high magnifications and at less 
than a tenth of the light power levels than previously possible33–35 to 
image animals for 1 hour without any sign of phototoxicity. Our sta-
bilization microscope is capable of accurately imaging fluorescence 
signals from both the soma and processes of multiple neurons in 
different z-planes as the animal moves freely on an agar plate over 
10 cm (Fig. 2a). We achieved this level of performance by stabilizing 
a marker neuron (AWCON, expressing mKOrange; Fig. 2b, top right 
panel) within our field of view in x, y, and z to micrometer accuracy 
(Fig. 2b, top right panel, and Supplementary Video 1) and its angu-
lar movement to within 45° as the animal crawled freely (Fig. 2c,  
σ=​22.3°, and Supplementary Video 2) through a 7 ms control loop.  
We achieved z tracking without a coverslip in a freely moving 
animal by imaging the fluorescent marker neuron simultane-
ously on two focal planes (Fig. 2b, left panel, and Supplementary 
Video 3). Rotational stabilization was achieved using a dove prism 
(Supplementary Video 4) mounted on a rotation stage. Having sta-
bilized the marker neuron accurately, we used a tunable liquid lens 
to simultaneously image other neurons expressing GCaMP6s37, for 
which the fluorescence changes based on the calcium levels in the 
cell, at different z planes (Supplementary Fig. 11 and Supplementary 
Video 5). We calibrated the accuracy and performance of this 
microscope to image from individual neurons (Fig. 2d–f and 
Supplementary Fig. 12a). Using a DLP projector, we could target 
light on a specific individual neuron in an animal in which multiple 
neurons expressed Arch, allowing for specific inhibition (Fig. 2f, 
Supplementary Fig. 12b, and Supplementary Video 6). The ability 
to simultaneously monitor and perturb neural activity with micron 
precision in animals moving freely (several centimeters) on an agar 
plate enabled us to uncover the roles of individual neuron subtypes 
in controlling speed (Supplementary Note 1).

Targeted inhibition of single neurons SIA, RMG, and AVB 
reduces the speed of locomotion. Using our microscope, we tested 
our inference that SIA, RMG, and AVB control speed. We selectively 
inhibited SIA in a Promdop-2::Arch line using targeted illumination 
with a randomized duty cycle to accurately assess the effects of the 
inhibition38. We observed a consistent decrease in speed every time 
we illuminated SIA (Fig. 3a). To quantify this effect, we normalized 
the speed during light-on intervals using the speed during light-off 
intervals as a baseline (Fig. 3b). Although control worms fed no 

Nature MethOds | VOL 16 | JANUARY 2019 | 126–133 | www.nature.com/naturemethods128

http://www.nature.com/naturemethods


ArticlesNATuRe MeThOdS

ATR did not show speed reduction, selective SIA inhibition resulted 
in a significant reduction in speed (32%, P =​ 2.23 ×​ 10–5, two-sam-
ple two-sided t-test) (Fig. 3b). Similarly, targeted inhibition of RMG 

(Promflp-21::Arch) and AVB (Promsra-11::Arch) led to a significant 
reduction in speed (59%, P =​ 5.36 ×​ 10–11, and 33%, P =​ 1.26 ×​ 10–6,  
respectively, two-sample two-sided t-test) compared to the no ATR 
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controls (Fig. 3c–f and Supplementary Fig. 13a), validating the 
inference methods.

In addition to certain sensory neurons (Supplementary Note 2),  
the interneurons AIY and RIB have been implicated as being 
important for speed control39. In our study, AIY was assigned a low 
weight through compressed sensing, and RIB was not identified. 
Furthermore, although the command interneuron AVB has been 
shown to control forward movement and is identified above, the com-
mand interneurons PVC40,41, as well as AVA, AVE, and AVD, which 
control reversals, were not. To test the validity of our findings we 
inhibited these neurons individually using our microscope. Inhibition 
of AIY or RIB did not result in a speed change (Fig. 3g). Moreover, 
although the inhibition of command interneurons AVA, AVD, and 
AVE led to a suppression of reversals, this inhibition did not affect 
speed distribution (Supplementary Fig. 13b–d)42. In addition, we 
selectively inhibited the activity of 10 neural subtypes that had low or 
no weights in our compressed sensing solution. Of the neurons that 
we tested (AIB, RIM +​ RIC, IL2, CEP, BAG, URX, AVE, RIM, MI, and 
PVQ), only URX showed a small but significant change in speed with 
inhibition (17% increase, P =​ 0.01, two-sample two-sided t-test).

Calcium imaging reveals distinct roles of SIA, RMG, and AVB 
in controlling speed. To further understand how these neurons 
control speed during foraging behavior, we used our microscope to 
measure calcium activity in different neurons as freely moving ani-
mals searched for food on an agar plate. Calcium activity in URX as 
well as in the other neurons (AIY, CEP, IL2, BAG, and RIM) showed 
no significant correlation with speed (Fig. 4a and Supplementary 
Fig. 14, P values for significance are listed in Fig. 4a). Again, calcium 
activity in RIB, which was implicated in the control of speed39, did 
not show any correlation with speed (Fig. 4a). Similarly, although 
the calcium activity in the command interneuron AVA corre-
lated with reversals, it did not correlate with speed (Fig. 4a and 
Supplementary Fig. 13d). Thus, interneurons that were previously 
implicated in speed regulation do not show any contributions to 
speed in the context of chemotaxis. Thus, they are not false nega-
tives of the compressed sensing approach.

In contrast to the neurons above, activity patterns in the neuron 
types RMG, SIA, and AVB, which we identified through our analysis 
as speed-controlling neurons, showed a significant correlation with 
the speed of animals (Fig. 4a and Supplementary Fig. 12; P =​ 0.0103, 
P =​ 0.0003, P =​ 0.0159, respectively, one-sample two-tailed t-test). 
These results, together with the results from the targeted inhibition 
of these neurons (Fig. 3), validate our compressed sensing solutions.

We next investigated the activity patterns of SIA, RMG, and AVB 
to understand their role in controlling speed. SIA calcium dynam-
ics in animals freely searching for food (Fig. 4b, Supplementary 
Fig. 15a,b and Supplementary Video 7) showed an autocorre-
lation time of approximately 50 s (Fig. 4c and Supplementary  
Fig. 15c). Furthermore, the correlation between SIA activity 
and speed increased with the window size of the low-pass filter 
beyond 1 min, plateauing at window sizes over 3 min (Fig. 4d and 
Supplementary Fig. 15d). The slow modulation in SIA activity 
and the frequency-dependent cross-correlation analysis suggests 
that SIA controls speed modulations on the timescale of minutes 
(Supplementary Fig. 15b). In contrast, correlations of RMG calcium 
activity with speed arose solely due to pausing events (Fig. 4e,f, 
Supplementary Fig. 15e and Supplementary Video 8); when paus-
ing events were removed computationally, correlations between 
RMG activity and speed vanished (Fig. 4g). During pausing, RMG 
activity decreased, but then increased again as the animal began 
moving, which in conjunction with our inhibition experiments 
suggests that RMG neurons control whether the animal pauses or 
moves (Supplementary Fig. 13a). Consistent with the role of AVB as 
a forward command interneuron40,41, we observed that AVB activity  
decreases whenever the animal makes a reversal and increases 

during the onset of transition from backward to forward motion  
(Fig. 4h,i, Supplementary Fig. 15f and Supplementary Video 9). 
In addition to these dynamics, we also observed that AVB activity 
decreases during pausing (Fig. 4h and Supplementary Fig. 15c,d).
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acts as a rectifier controlling forward motion, and SIA modulates the speed continuously.
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Discussion
As C. elegans searches for food in its environment, the spatial pro-
files of odors are translated into temporally changing signals by cili-
ated sensory neurons exposed at the nose tip. These signals are then 
processed by the interneurons of the animal to determine explora-
tion strategies. The translation of the spatial information into a time 
series of odor signals is determined by the speed of the animal. Here, 
we identified the three interneuron types, RMG, SIA and AVB, that 
control the nematode’s speed. These three neuron types form a cir-
cuit with RMG synapsing onto both AVB and SIA24 (Fig. 4j). RMG, 
an inter-motor neuron that synapses predominantly onto both head 
motor neurons and head muscles, has been implicated previously 
in the control of how active the animal is in different oxygen con-
centrations43,44, and has been termed a ‘hub’ interneuron involved 
in signal integration45. SIA neurons were originally identified as 
interneurons24 but they also innervate neck muscle groups11. In this 
circuit of RMG, SIA, and AVB, our data together suggest that RMG 
acts as a switch to determine whether the animal moves or not, AVB 
acts as a rectifier, to determine whether the animal moves forward 
or not, and SIA modulates the speed continuously over timescales 
of a minute (Fig. 4j). Our work raises the question of how inputs 
into this circuit, including from dopaminergic neurons, which are 
upstream of RMG and SIA, have a role in modulating circuit activity 
and the resulting speed modulations during chemotaxis.

Statistical analyses of the measurement matrix through corruption 
and changes in size enable the robustness, and false-positive and false-
negative rates of the inferences to be determined. Such analyses also 
enable us to identify specific promoters that can be added to the mea-
surement matrix to improve the quality and accuracy of the inferences. 
These statistical analyses on our experimental measurement matrix 
suggest that we could have missed one interneuron subtype in our set 
of key neurons controlling speed. Future experiments activating neu-
rons using channel rhodopsin and analyzing the data using our frame-
work will help identify additional neurons we could have missed.

In conclusion, a compressed sensing-based framework that 
exploits non-specific genetic tools, in conjunction with the micro-
scope and the set of archaerhodopsin lines developed in this work 
should enable rapid and comprehensive understanding of the neu-
ral circuits that drive the behavior of C. elegans. Similar experimen-
tal methods based on compressed sensing have the potential to 
discover the key nodes that control a phenotype in complex biologi-
cal networks, including the nervous systems of higher organisms as 
well as gene regulatory networks.

URLs. CVX package (http://cvxr.com/cvx); MNIST (http://yann.
lecun.com/exdb/mnist/)
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Methods
C. elegans strains. Strains were grown and maintained under standard 
conditions unless indicated otherwise. All experiments were carried out using 
lite-1(ce314)-mutant animals, which have lower sensitivity to blue light than 
the wild type. All transgenic Arch lines were generated by injecting fused 
promoter::Archaeorhodopsin-3-tagRFP or GFP constructs. The details of all 
transgenic lines used in this study can be found in Supplementary Table 1 and 
Supplementary Table 2.

Promoter expression, neuron identification, and the measurement matrix. 
The neuronal expression pattern of the promoter::Arch constructs was verified 
using high-magnification (63×​) fluorescence and differential interference contrast 
(DIC) microscopy (Zeiss Cell Observer). Only lines showing a phenotype or 
expression patterns that were obviously different from that in the literature under 
a lower magnification (15×​) fluorescence microscope were examined (Zeiss 
SteREO Discovery, v12). In most instances, a combination of fluorescence–DIC 
co-localization and neuron process morphology was sufficient to determine the 
expression pattern. We imaged a minimum of 10 animals for each line and claimed 
that the line expressed those neurons reliably if they were observed in at least 75% 
of the animals. Promoters and lines that showed a higher degree of mosaicism 
were discarded. The measured expression patterns were used to generate the 
measurement matrix M.

Behavioral assay with optogenetic perturbations and image processing. All 
promoters were fused to Archaerhodopsin-3 by fusion PCR and injected into  
C. elegans using standard protocols46 to create transgenic animals. Transgenic 
animals were fed ATR (1 mM), a cofactor required for rhodopsin activity, for 12 h or  
more before the behavioral assay. To minimize the effect of the mosaicism in the 
experiments, only animals that expressed Arch in all of the identified neurons in 
each behavioral experiment were selected carefully using a fluorescent microscope. 
Only young adults from each transgenic line were used in the behavioral assay. 
Between 5 and 50 animals at a time were placed 1.5 cm away from the center of the 
bacteria lawn (approximately 3 mm in radius). The same number of worms per 
run was used for corresponding controls every time. The green light (5 mW mm−2) 
from a ScopeLED G250 that was used to activate Arch covered >​70% of the plate 
area with less than 15% variation in intensity, as verified with a Thorlabs S120C 
photodiode. Worms can behave normally for more than 1 h under a 5.5 mW mm−2 
green light26. Therefore, we used 5 mW mm−2 as the safest known high power level 
in our silencing experiments. A video camera was used to record the movements 
of the worms at 3–5 frames per s (fps)47. Only data from approximately 70% of 
the plate area centered on the bacterial lawn was processed and analyzed. For 
each set of experiments performed on a day, a parallel set of positive and negative 
control experiments were performed under identical conditions. As positive 
controls, experiments were performed on animals with pan-neuronal expression of 
Archeorhodopsin. Under illumination, these animals are paralyzed, thus validating 
our set up as well as the quality of ATR. As negative controls, animals from the 
same line that were not fed ATR (and hence were unaffected by green light) and 
lite-1 animals were used. The same LED illumination was used for the control and 
the experiments.

Custom MATLAB software with elements from ‘The Parallel Worm Tracker’48 
was used to segment and track the position of individual nematodes across camera 
frames. We tracked worms until they entered the bacterial lawn. To estimate sub-
pixel and hence sub-resolution-scale displacements, we binned the real space into 
discrete pixels based on pixel size. Thus, a nonzero displacement was only observed 
if the animal moved more than two times the pixel width, the distance between 
diagonally adjacent pixels. Such analysis is likely to be more accurate than arbitrary 
time averaging, which is typically used but does not take spatial resolution into 
account. Under roughly 1×​ magnification, each animal was typically around 
50–100 pixels in size. Speed was calculated by taking the time derivative of the 
centroid position.

Data analysis for behavior screening. The speed of animals was measured until 
they reached the bacterial lawn. Speed naturally fluctuates during the movement of 
wild-type animals, and so to determine whether certain neurons affect speed, it is 
necessary to measure the distribution of the speed over the course of the behavioral 
experiment. Therefore, for each transgenic line and corresponding control, speed 
data from at least 10 animals were analyzed to obtain the speed distribution for that 
line. To determine whether the transgenic line showed significant changes in speed, 
we measured the KL divergence between the speed distribution of this line and the 
control experiment. In parallel, we also measured the KL divergence between  
the 131 distinct control experiments in our dataset to obtain the distribution  
of the intra-control KL divergence values. As long as the KL divergence between 
the speed distribution of the transgenic line and the control was above the 
95th percentile of the intra-control KL divergence values, we assumed that the 
transgenic line showed a speed phenotype.

To infer key neurons robustly, we tested two different phenotype vectors based 
on KL divergence: binary and continuous. For the continuous phenotype vector, 
mean speed reductions were calculated with respect to control. Phenotypes for 
promoters in which experimental and control lines are indistinguishable based on 

KL-divergence were taken to have no speed change. Promoters not distinguishable 
from control were taken to have no speed change (we carried out further tests to 
check that this assumption did not affect the results). Using the phenotype vector 
→
P , and the measurement matrix M, both the neuron weights ω→ and confidence 
in these weights were calculated for each of 88 neuron types. To calculate the 
confidence in the weights, errors in the measured mean speed changes were 
propagated onto inferred neuron weights with bootstrapping. We sampled the 
phenotype vector 10,000 times from normal distribution with a mean as fractional 
mean speed changes and s.d. as the standard error of mean speed changes. We then 
used these phenotype vectors to calculate the weight distribution for each of the 88 
neuron types. For these analyses, Lasso and LassoCV packages from the Python 
machine learning library (scikit-learn v0.19.2) were used with the default tolerance 
value. Other optimization methods were also tested, such as MATLAB lasso, 
convex optimization package (CVX package), and MATLAB linprog (L1-norm 
minimization: min ||ω→||1 subject to ω→=→

M P ). These gave consistent results.

Artificial neural networks. To test whether key neurons could be inferred in 
a nonlinear neural network, we trained a fully connected feed-forward neural 
network using deep learning algorithms to recognize handwritten digits (which  
is a standard task for deep neural networks)49. This network classified digits  
as 0 to 9 from 28 ×​ 28 grayscale images (MNIST). The network consisted of the 
input layer of 784 neurons, 4 hidden layers each with 100 neurons, and the output 
layer consist of 10 neurons signaling the output class of the digits (Supplementary 
Fig. 10a). Each neuron in the network was extremely nonlinear with a sigmoidal 
activation function (Supplementary Fig. 10b). We trained this network on a 
training dataset (60,000 images) using categorical cross entropy as a loss function. 
During training to produce networks with a small number of key neurons and to 
promote sparse representation of the data, we added L1 constraint to activations 
of neurons. After training, when the network was shown examples of handwritten 
digits from the training dataset, a fraction of units (neurons) in the network 
showed activity for individual digit images, whereas with white noise data the 
activation was broad (Supplementary Fig. 10c). For simplicity, we focused on a 
single hidden (intermediate) layer of the trained network in our analysis. Exploiting 
our computational access to the neurons in this network, we inhibited each 
neuron in a layer one at a time to measure the change in accuracy of handwriting 
recognition on a test dataset consisting of 10,000 images. These measurements 
quantified the weights of individual neurons in handwriting recognition and 
constituted the ground truth for the network (Supplementary Fig. 10d). We then 
tested whether compressed sensing could recover these weights and, in particular, 
identify neurons that have an essential role in digit recognition. To do so, we built a 
measurement matrix by generating 50 groups each containing 5 randomly chosen 
neurons. As in our C. elegans experiments, we inhibited all the neurons in a row 
of the measurement matrix and measured the phenotype (change in accuracy of 
handwriting recognition on the test dataset) (Supplementary Fig. 10e,f). Using 
Lasso, with this measurement matrix we could correctly identify the key neurons 
essential for digit recognition. (Supplementary Fig. 10g–i). We also determined  
how error rate and accuracy of inference changes with the size (number of 
rows) of the measurement matrix. We changed the number of rows (equivalent 
to the number of independent measurements using different groups) from 25 
to 60 to determine how performance of the method changes with the size of 
the measurement matrix (Supplementary Fig. 10j). These tests suggested that 
compressed sensing can be used to find essential neurons in this nonlinear artificial 
neural network. This work was implemented using Keras v2.1.3 Python deep 
learning library with TensorFlow backend.

Statistical analysis of the measurement matrix. To evaluate the performance 
of our measurement matrix, we performed simulations. In these simulations we 
first assigned a randomly chosen set of n neurons (with n between 1 and 11 out 
of the total of 88 subtypes covered by the measurement matrix) as essential for 
behavior. We assigned weights (ω→real) to these essential neurons such that when 
each of these essential neurons was inhibited in our simulation, the phenotype 
changed positively or negatively by at least 30% of the wild-type value. We assigned 
0 weights to non-essential neurons. We first assumed that when multiple neurons 
were inhibited simultaneously, the effects of these neurons on the phenotype 
added linearly. We used our measurement matrix to calculate the phenotype vector 

ω
→= →MP real. We then hid the identities of the essential neurons and attempted to 
infer these identities from this phenotype vector 

→
P  using compressed sensing. 

We used Lasso to infer the weights ω→inferred of individual neurons. We compared 
ω→inferred against ω→real to obtain false-positive and false-negative rates. By performing 
this computational test thousand times for different randomly chosen sets of 
essential neurons, we determined the average false-positive and false-negative rates 
(Supplementary Fig. 9a). We then ascertained that the false-positive and false-
negative rates were robust to how the phenotype vector was evaluated by using a 
nonlinear function such that the combined phenotype of multiple neurons did not 
add linearly. We did so by evaluating the phenotype ω

→= →MP sgn( )real  where  
sgn(x)=​{−​1 if x <​0;0 if x=​0;1 if x>​0} and repeated the calculation of the false-
positive and false-negative rates (Supplementary Fig. 9b). We further evaluated 
the false-positive and false-negative rates as the measurement matrix size changed 
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from 22 to 32 rows (promoters) (Supplementary Fig. 9c–e), and evaluated how 
these rates depended on the total number of promoter constructs used in the 
experiments (Supplementary Fig. 9f).

Promoter removals and additions. We tested the robustness of the solution 
(RMG, SIA, and AVB) to the removal of promoters from and additions of 
promoters to the original set, and thus to changes in the measurement matrix. 
We used mean speed changes as our phenotype vector as before, but we did not 
carry out bootstrapping analysis with the uncertainty on the measurements, 
for simplicity. First, we randomly removed from 1 to 5 promoters from our 
measurement matrix to create new measurement matrices. We next obtained the 
identities of the key neurons for a range of sparsity parameters for each of these 
new matrices (Supplementary Fig. 6a). In all instances, the inference of AVB, 
SIA, and RMG was robust to the removal of promoters (Supplementary Fig. 6b). 
Nevertheless, upon removal of promoter mgl-1 (Pmgl-1), the solution contains AIA 
and the weight of AVB decreases (Supplementary Fig. 6b). This is because only 
two promoters drive expression in AIA in our measurement matrix: Pmgl-1 with 
no speed change and Psra-11 with significant speed change. Therefore, removal 
of Pmgl-1 introduces AIA as a neuron that can control speed. Once Pmgl-1 and 
the fact that it does not show a speed phenotype are taken into account, AIA is 
not contained in the sparse solution (Supplementary Fig. 6c). The sensitivity of 
the inference to perturbations of the measurement matrix enables us to determine 
the neurons whose inferences are most sensitive to the identity of the chosen 
promoters.

To test the robustness upon promoter additions, we generated five more 
transgenic lines expressing Arch in multiple neurons and measured the speed 
phenotype in each of these lines. We added these five new promoters (Podr-2(16),  
Popt-3, Pntr-2, Psams-5, Ptdc-1) to the original set to increase the size of our 
matrix to 32 promoters. The identity of the key inferred neurons remained 
unchanged with these new behavioral data and the expanded measurement matrix 
(Supplementary Fig. 7).

Arch efficiency simulations. Although the Arch lines were imaged at high 
magnification to validate their expression pattern and only animals showing clear 
expression patterns of the fluorescent tag were picked for behavioral assays, errors 
in our inference due to variations in the levels of archaerhodopsin expression 
are possible. We further tested the robustness of our methods to corruption of 
the measurement matrix. Our original measurement matrix had an entry of 1 if 
a promoter drove expression in a neuron type, and 0 otherwise. We corrupted 
10% of the entries of our measurement matrix at random computationally, such 
that the 1s were changed with equal probability to a number between 0 and 0.5 
(corresponding to randomly reducing or abrogating the expression of a subset 
of the neurons in a subset of the promoters). We thus generated 1,000 distinct 
corrupted measurement matrices. We then used these corrupted measurement 
matrices to infer the key neurons from behavioral experiments to determine the 
statistical robustness of our inferences to reduction and abrogation of expression 
levels in subsets of neurons. In almost every instance, the solutions (RMG, SIA, 
and AVB) were robust. There were two exceptions: when the corruption of the 
measurement matrix (Supplementary Fig. 8a) led to the abrogation of expression 
in RMG by the promoter Pflp21 or in AVB by the promoter Psra-11, RMG and 
AVB were missed as key neurons, respectively. This is because in our entire set 
of promoters, only Pflp21 drives expression in RMG, and only Psra-11 drives 
expression in AVB. Such computational perturbations of expression of individual 
promoters in SIA in did not affect the inference because multiple promoters in our 
Arch lines show expression in SIA (Supplementary Fig. 8a,b).

Tracking (stabilization) microscope. Real-time tracking and image stabilization. 
Tracking and image stabilization are achieved through a combination of fast 
acquisition, computation, and mechanical feedback. Our system is able to image, 
process, and feedback to x, y, z coordinates and rotational controls, all within 7 ms. 
To stabilize worm movement, motion in the x,y,z coordinates, and rotation (r) 
resulting from head bending, must all be tracked simultaneously. In brief, a green 
543 nm laser (<​5 mW mm[−2) is used to excite the mKusabira-Orange (mKO)-
tagged marker neuron, AWCON. Fluorescence is collected by a 50×​/0.55-NA 
(numerical aperture) (Nikon 50×​ LU Plan ELWD 0.55-NA) objective and passed 
through a dove prism mounted on a rotation stage. The dove prism uses internal 
reflections to rotate the image. The rotated beam is then split into two adjacent 
images that focus at slightly different z depths on an EMCCD (electron multiplying 
charge-coupled device); one in focus, the other slightly out of focus (Fig. 2b). This 
step, colloquially referred to as dual-view, was accomplished by inserting a lens in 
one of the otherwise optically equal length paths and is a modern interpretation of 
a classic technique used by H. Berg to track swimming E. coli50. The pixels from the 
camera are then read serially onto the FPGA (field programmable gate array) and 
processed immediately as they enter.

To facilitate fast and reliable real-time processing, FPGAs were used. FPGAs 
are parallel-processing CPUs (central processing units) that enable high-speed 
synchronization of multiple simultaneous processes, and this was required for 
our tracking system. Positional x,y,z,r information was simultaneously extracted 
from raw images in parallel, without any one process delaying another. The x,y 

position was calculated from the centroid of the cell body in the focused image. 
The z position was measured by calculating the difference in intensity between the 
focused and out-of-focus images. The angular orientation, θ​, was calculated from 
the marker neuron’s process, which extends from the cell body to the animal’s nose 
tip. The displacement from the target position was then passed to x,y,z,θ stages 
(x,y, piezo +​ servo; z, stepper; θ, servo) to mechanically move the worm back to the 
target location. This was all done at 100 fps and less than 10 ms latency. As a result, 
we could stabilize the >​250 μ​m s−1 movements of the marker neuron cell body to  
1 μ​m; less than its radius. Head bending motion artifacts were also reduced twofold 
(Fig. 2b). Tracking and stabilization with 1-micron accuracy could be maintained 
over an hour and over centimeters of travel.

Dove prism for image rotation. We used a dove prism (Thorlabs PS992-A) mounted 
in a rotation stage to rotate the image and compensate for bending of the worm’s 
head, as rapid computation by the FPGA was only possible using addition and 
subtraction operations, and hence there was insufficient time to computationally 
rotate the image. Dove prisms have been used in astronomy and machine vision 
as ‘beam rotators’51. A challenge of aligning the dove prism is that its rotation 
axis must be collinear with that of the rotation stage. Small lateral or angular 
deviations result in image nutation, or ‘rocking’. Fortunately, there are some 
established alignment procedures52,53. We assembled an alignment apparatus using 
a combination of off-the-shelf stages (ThorLabs CXY1 and KS1). Then, we aligned 
the dove prism by minimizing the rotational displacement. More precisely, we 
measured the trajectory of a point-like fluorescent particle in our field of view 
as we rotated the dove prism and iteratively adjusted translations orthogonal to 
the optical axis as well as the azimuth (tilt) to minimize the path total length and 
asymmetry, as done previously in the literature52,53.

z tracking from two focal planes. We tracked the z position by comparing the 
‘fuzziness’ between two images of the marker neuron taken at different focal 
planes. The technique was first used by Berg in 1971 (ref. 50) to track swimming 
E. coli. The fuzziness of an object, as measured by its intensity, does not give the 
absolute position as the fuzziness is symmetric above and below the focal plane. 
Comparing this to the image from a different focal plane, however, enables the 
exact z position to be calculated as the difference in intensity between the two 
images is monotonic near either focal plane. Berg explains, as the object moves 
toward one focal plane, “its image sharpens on [that focal plane] and fuzzes out 
more on [the other plane]”50.

x,y,z,r stages. To achieve precision and speed, as well as range, we stacked fast but 
small x,y piezo stages (PI) on long travel servomotor stages (Newport LTA-HS).  
The micron-scale position was read from the encoded stages onto an FPGA 
(National Instruments PXIe-7966R) as an analog voltage. A non-encoded linear 
stepper motorized stage (Thorlabs ZFS13B, Sparkfun EasyDriver) was used to 
control the z position. The dove prism used for rotating the image was placed 
in a servo-controlled rotation stage (Newport URB100C) that was set to track a 
voltage and corresponding angle using its own internal PID feedback. The servo 
stages were all driven by a stage controller (Newport XPS Controller) and custom-
written.tcl scripts. All tracking movement signals were processed and sent by an 
FPGA. Custom-built digital-to-analog and analog-to-digital converters (Harvard 
University Electronic Instrument Design Lab) were used wherever necessary.

LabVIEW FPGA for hardware control and real-time processing. FPGAs were used 
to control both tracking and imaging. Processes on FPGAs can run in parallel, 
as opposed to sequentially on a CPU. This means that each process loop runs 
exactly at its specified rate no matter the loading on itself or other loops. We used a 
National Instruments 1483 Camera Link Adaptor Module to interface the camera 
(Andor iXon Ultra 897) to the FPGA. The different stages have different sampling 
rates and because the FPGA can communicate with each of them independently, 
no process delays another.

FPGAs were programmed with The LabVIEW FPGA platform without using 
low-level hardware language. LabVIEW FPGA compiles code written in the 
standard LabVIEW interface into VHDL (Hardware Description Language). It 
has the additional benefit of a PC interface that we used to not only save images 
and data, but also to monitor the experiment in real time and manually control 
the stages when necessary. Although data were saved on the PC when rates were 
variable, we minimized timing uncertainty by bundling timestamps from the 
FPGA clock with the data. All GCaMP (a genetically encoded calcium indicator), 
tracking, and wide-field images were synchronized using these timestamps.

The algorithms used to process images and track the worm are simple and 
fast. In the x,y,z tracking loop, two focal plane images of the marker neuron are 
first thresholded to remove all but the soma. The centroid of the soma from the 
in-focus image was calculated to obtain x and y positions. The difference in power, 
sum of all pixel intensities, between the in- and out-of-focus images was used as 
a measurement for z position. In the tracking loop, a different threshold was used 
to remove background noise but keep the cell process. The angular orientation of 
the process was determined by first fitting an approximate spline. The process was 
first split into roughly eight segments by binning pixel rows roughly perpendicular 
to the process, calculating the centroid in each of them, and then drawing a line 
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between centroids from adjacent bins. The angular orientations of these segments 
were then averaged to obtain the process’ orientation. All of these position 
calculations occurred as pixels are serially read from the camera and completed by 
the time the last pixel in the image was read. This setup ensured the calculations 
did not add any latency, and their speeds were limited only by the camera’s data 
transfer rate.

GCaMP calcium imaging. Tracking and image stabilization enabled the calcium 
signal to be imaged as if the worm were immobilized. A blue LED or DLP (digital 
light processing) projector (Logic PD DLP LightCommander) was used to provide 
wide-field illumination for GCaMP6s imaging. An exposure time of 30 ms was 
used, which enabled the use of blue light levels around only 0.5–1 mW mm[−2; 
several times less than the reported dangerous level26. This low blue light level is 
one of the reasons that we have been able to image freely moving worms at high 
spatiotemporal resolution for an order of magnitude longer than other methods. 
The sampling rate was 15.625 fps. Stabilizing the image also enabled us to perform 
volumetric z scans as can be done on some commercial microscopes equipped 
with autofocus systems, such as the Zeiss Definite Focus and Nikon Perfect Focus, 
except that those systems track the coverslip surface rather than the sample. These 
commercial systems can compensate for temperature related z drift but cannot 
do volumetric scanning in a moving sample. Rather than changing the objective 
to sample distance to vary the focal plane, a liquid lens with an adjustable focal 
length (Optotune EL-10-30-C) was placed in a 1×​ relay system between the tube 
lens and GCaMP imaging camera (Hamamatsu ImagEM X2). An FPGA (National 
Instruments PXIe-7961) was used to acquire images from the camera and control 
the liquid lens. The focal length of the tunable lens is voltage controlled and can be 
varied between 100 and 200 mm. In this configuration, the tunable lens can scan 
through the entire approximately 50 μ​m width of the worm without any variance 
in image quality or magnification54. Including the 30 ms exposure times, the entire 
worm (15 z-slices) could be scanned through in 1 s.

GFP control to characterize motion artifacts and sampling noise. We used GFP as 
a control to characterize remaining motion artifacts and noise in the microscope. 
A specific promoter (Pttx-3) was used to drive GFP expression in a left–right pair 
of interneurons: AIYR and AIYL. Movement artifacts would have the same effect 
on measuring GFP as on GCaMP6s. Similarly, readout and dark noise from the 
camera would be the same, as would shot noise given that the GFP and GCaMP6s 
intensities are comparable. GFP control shows that the error in the measurement, 
including all remaining motion artifacts and camera noise, was less than 18% as 
measured by the s.d. (Fig. 2e). Smoothed GFP intensity time series over 3 s had a 
s.d. of less than 10% indicating that much of the noise we observe is at frequencies 
faster than 0.3 Hz.

Structured illumination. The DLP projector was used for spatially structured 
illumination for targeted photoactivation. A series of approximately 75 mm relay 
lenses were used to map the image of the DLP to the sample plane and appropriate 
excitation filters were used depending on the application. The DLP was controlled 
using a combination of software written in LabVIEW and its native software.  
In our configuration, the DLP is limited to refreshing at 30 fps through HDMI,  
but with more hardware-level control, this could be increased to 60+​ fps.  
See Supplementary Note 1 for the detailed catalog of the components of the 
microscope and the critical notes about the components.

Targeted inhibition of neurons. Animals expressing multiple neurons were fed 
with ATR overnight before tracking with our stabilization microscope. After 
tracking and stabilization, we located the position of the neuron of interest on the 
camera. A pattern of light was then projected from the DLP projector to selectively 
target the neuron of interest. To ensure that only the neuron of interest remained 
illuminated as the worm changed orientation, we used a custom LabView script that 
computationally rotated the projected image in synchrony with the dove prism. This 
was made possible by aligning the center of the rotation of the projected pattern to 
the center of rotation of the dove prism. By following the entire process on camera, 
we were able to confirm the selective illumination of the neuron (Fig. 2f).

Targeted inhibition experiments were performed by pulsing structured 
illumination patterns while recording the animals’ speed. Speed changes 
due to inhibition (Fig. 3) were found by smoothing the speed traces with an 
approximately 1 s low-pass filter and then normalizing speed during pulses (light 
ON periods) with the speed between pulses (light OFF periods). If the OFF period 
average speed was less than 20 µ​m s−1, we discarded those cycles as it generates 
artifacts and introduces bias to the distribution. The results are not sensitive to a 
20 µ​m s−1 threshold. Each track (data points) had five cycles on average. Transgenic 
lines used in targeted inhibition experiments and single-neuron-expressing lines 
related to Fig. 3 are listed in Supplementary Table 2.

Image analysis of calcium imaging data. GCaMP6s intensity information was 
extracted using custom software written in MATLAB. Regions of interest and 

segmentation corresponding to different neurons in x,y are obtained from the 
maximum intensity projection. As a result of image stabilization and tracking, each 
neuron stays localized to a specific region of interest throughout the time series 
(Supplementary Fig. 11a,b). Within a region of interest that resolves neurons in 
x,y (Supplementary Fig. 11b), neurons at different z positions could be identified 
from the histogram of the position of each slice containing the maximum intensity 
pixel within each z-stack, as the intensity of a neuron increases towards the focused 
plane. The best focal plane was taken as that which maximizes intensity in the 
region of interest for a specific neuron (Supplementary Fig. 11c,d).

Calcium activity and speed correlation analysis. Cross correlation between 
calcium activity and speed of animals were obtained at different frequencies by 
applying low-pass, high-pass or band-pass filters to both GCaMP6s and speed 
to find the best significant correlation between two signals using the Pearson 
correlation. GCaMP6s data were randomly shuffled 100 times and the correlation 
coefficient was calculated. The correlation with the shuffled data was used to 
measure whether cross correlation between the actual calcium activity and speed 
was significant. For example, SIA experiments in Supplementary Fig. 15a,b show 
significant correlation between calcium activity and speed of locomotion even 
when the smoothing window sizes are up to 3 min long (Supplementary Fig. 15g,h) 
while the significance of the correlation of other neurons deteriorated with the 
smoothing window size (Supplementary Fig. 15i,j).

Statistical information and reproducibility. Statistical tests used in this 
study are indicated in the corresponding figure legends. Other randomization 
and bootstrapping methods applied to data were explained in detail in the 
Methods section. Details on the statistical test used in Fig. 3 can be found in the 
Supplementary Table 3. Experiments in Fig. 2b,c were repeated independently 
with similar results more than 50 times. Experiments in Fig. 2d,e were repeated 
three times independently with similar results. Targeted illumination control 
experiments as in Fig. 2f were repeated three times independently with similar 
results. Experiments in Fig. 3a–f were repeated independently with similar results 
5, 5, 5, 5, 10 and 10 times, respectively. Experiments in Fig. 4b were repeated 
nine times independently with similar results. Experiments in Fig. 4e,f were 
repeated four times independently with similar results. Experiments in Fig. 4h,i 
were repeated seven times independently with similar results. Experiments in 
Supplementary Videos 7,8,9 were repeated independently with similar results nine, 
four and seven times, respectively.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Custom codes implementing the compressed sensing analysis 
and the statistical analysis of the measurement matrix are available at the Code 
Ocean platform55,56.

Data availability
The data that support the findings presented in this study are available from the 
corresponding authors upon reasonable request.

References
	46.	Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48,  

451–482 (1995).
	47.	Baek, J.-H., Cosman, P., Feng, Z., Silver, J. & Schafer, W. R. Using machine 

vision to analyze and classify Caenorhabditis elegans behavioral phenotypes 
quantitatively. J. Neurosci. Methods 118, 9–21 (2002).

	48.	Ramot, D., Johnson, B. E. Jr, Berry, T. L. Jr, Carnell, L. & Goodman, M. B. 
The Parallel Worm Tracker: a platform for measuring average speed and 
drug-induced paralysis in nematodes. PLoS ONE 3, e2208 (2008).

	49.	Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied 
to document recognition. Proc. IEEE 86, 2278–2324 (1998).

	50.	Berg, H. C. How to track bacteria. Rev. Sci. Instrum. 42, 868–871 (1971).
	51.	Shin, C. W., Inokuchi, S. & Kim, K. I. Retina-like visual sensor for fast 

tracking and navigation robots. Mach. Vis. Appl. 10, 1–8 (1997).
	52.	Mao, W. Error and adjustment of reflecting prisms. Opt. Eng. 36,  

3367–3372 (1997).
	53.	 Sullivan, D. L. Alignment of rotational prisms. Appl. Opt. 11, 2028–2032 (1972).
	54.	David Giese, J., Ford, T. N. & Mertz, J. Fast volumetric phase-gradient 

imaging in thick samples. Opt. Express 22, 1152–1162 (2014).
	55.	Lee, J.B. et al. A compressed sensing framework for efficient dissection of 

neural circuits. Code Ocean https://doi.org/10.24433/CO.020095e2-4067-
4d44-9ea4-30d55309dda9

	56.	Lee, J.B. et al. A compressed sensing framework for efficient dissection of 
neural circuits. Code Ocean https://doi.org/10.24433/CO.3bc0d23b-b316-
474d-9ab2-076e1deac88a

Nature MethOds | www.nature.com/naturemethods

https://doi.org/10.24433/CO.020095e2-4067-4d44-9ea4-30d55309dda9
https://doi.org/10.24433/CO.020095e2-4067-4d44-9ea4-30d55309dda9
https://doi.org/10.24433/CO.3bc0d23b-b316-474d-9ab2-076e1deac88a
https://doi.org/10.24433/CO.3bc0d23b-b316-474d-9ab2-076e1deac88a
http://www.nature.com/naturemethods


1

nature research  |  life sciences reporting sum
m

ary
N

ovem
ber 2017

Corresponding author(s): Sharad Ramanathan, Abdullah Yonar

Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 
For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

    Experimental design
1.   Sample size

Describe how sample size was determined. No statistical methods are used to predetermine sample size. For speed measurements, the 
sample size were large enough to obtain accurate average speed distributions (corresponding 
to an hour long measurement) for each line. For targeted neuron inhibition and GCaMP 
imaging experiments, our sample sizes were similar to or larger than those reported in 
previous publications in the field.

2.   Data exclusions

Describe any data exclusions. In targeted neuron inhibition with light pulsing experiments, If off-light baseline average 
speed was less than 20um/s, we discarded those cycles since it generates artifacts and 
introduce bias as also described in the Methods section. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

The number of replicates and experiments performed were reported in either corresponding 
figure legends or statistical information and reproducibility section in the Methods. 
Experiments by different team members for optogenetic inhibition and calcium imaging were 
pooled.  All attempts at replication were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

In optogenetic experiments, genetically identical worms randomly selected as either 
experimental group fed with ATR or control group not fed with ATR.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

No blinding was performed. The data acquisition and analysis pipeline was identical for all 
experimental and control animals and the analyses did not involve human scoring. 

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Python 2.7 - scikit-learn v0.19.2 (Lasso and LassoCV) 
Keras v2.1.3 (Python 3.5) 
Matlab (2015a, 2017a) 
CVX - http://cvxr.com/cvx 
Labview 2014 
Custom Software for Compressed Sensing analysis and its statistical analysis that produce 
exact figures in the paper are available from CodeOcean platform (DOI: 10.24433/
CO.020095e2-4067-4d44-9ea4-30d55309dda9 and DOI:10.24433/CO.3bc0d23b-
b316-474d-9ab2-076e1deac88a) 
 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

 All unique materials are readily available from the authors

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

C. elegans (nematode)

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

 This study did not involve human research participants.
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